首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   14篇
工业技术   169篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   13篇
  2010年   16篇
  2009年   17篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   12篇
  2004年   11篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
41.
Filler nanoparticles greatly enhance the performance of polymers and minimize filler content in the resulting nanocomposites. At the same time, they challenge the manufacturing of such nanocomposites by filler agglomeration and non‐uniform spatial distribution. Here, multifunctional nanocomposite films are made by capitalizing on flame‐synthesis of ceramic or metal filler nanoparticles followed by rapid, in situ deposition on sacrificial substrates, resulting in a filler film with controlled porosity. The polymer is then spin‐coated on the porous film that retained its stochastic but uniform structure, resulting in nanocomposites with homogeneous filler distribution and high filler‐loading. By sequential repetition of this procedure, sophisticated, multilayer, free‐standing, plasmonic‐ (Ag‐Fe2O3) and phosphorescent‐superparamagnetic (Y2O3:Eu3+‐ Fe2O3) actuators are made by precisely tuning the polymer thickness between each functional nanostructured layer. These actuators are quite flexible, have fast response times, and exhibit superior superparamagnetism due to their high filler content and homogeneous spatial distribution.  相似文献   
42.
Dopants for synthesis of stable bimodally porous titania   总被引:8,自引:0,他引:8  
Bimodally porous titania powders doped with alumina, zirconia, and silica were made by wet precipitation from organometallic precursors (for Al/Ti=0.05-0.4, and Zr/Ti=Si/Ti=0.1). Doping retards not only the anatase-to-rutile phase transformation, but also the crystallite growth of titania. So it was used to control the powder phase composition and pore structure at high temperatures. The extent of the retarding effect on pore structure and phase transformation increased with increasing alumina concentration. The effectiveness of these dopants follows the order of: zirconia>silica>alumina. The dopants also reduce the loss of surface area of the calcined powders by decreasing the sintering and phase transformation rates. All powders exhibited bimodal pore size distributions (PSD) with fine intra-particle pores (1–4 nm) and larger inter-particle pores (10–120 nm). However, the intra-particle pores of the pure titania disappeared at 600°C, while the bimodal PSD of doped titania was maintained up to 750°C.  相似文献   
43.
44.
One of the most important design issues for filament-wound hydrogen storage vessels reflects on the determination of the optimal winding trajectories. The goal of this paper is to determine the optimal fiber paths and the resulting laminated structures for non-geodesically overwound circular toroidal hydrogen storage vessels. With the aid of the continuum theory and the non-geodesic law, the differential equations describing non-geodesic paths on a toroidal surface are given. The general criteria for avoiding fiber-bridging and slippage on a torus are formulated by differential geometry. The relation between the slippage coefficient and the winding angle is obtained to meet stable winding requirements. The initial winding angle and the slippage coefficient of non-geodesics are considered as the design variables, while the minimum shell mass acts as the objective function. The optimal non-geodesic trajectories, corresponding to various relative bending radii, are determined in order to evaluate the effect of non-geodesics on the structural performance of toroids. Results indicate that circular toroidal vessels designed using the present method show better performance than geodesics-based ones, mainly triggered by maximum utilization of the laminate strength. The results also reveal that the structural efficiency of circular toroidal vessels can be significantly improved using non-geodesic winding.  相似文献   
45.
Porous titania powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP) and were characterized at various calcination temperatures by nitrogen adsorption, X-ray diffraction, and microscopy. The effect of HCl or NH4OH catalysts added during hydrolysis on the crystallinity and porosity of the titania powders was investigated. The HCl enhanced the phase transformations of the titania powders from amorphous to anatase as well as anatase to rutile, while NH4OH retarded both phase transformations. Titania powders calcined at 500°C showed bimodal pore size distributions: one was intra-aggregated pores with average pore diameters of 3–6 nm and the other was interaggregated pores with average pore diameters of 35–50 nm. The average intra-aggregated pore diameter was decreased with increasing HCl concentration, while it was increased with increasing NH4OH concentration.  相似文献   
46.
Catalysts for NOx storage–reduction (NSR) were made selectively with Pt on either the Al- or the Ba-components without altering significantly the Al2O3 or BaCO3 crystal sizes, Al/Ba weight ratio, specific surface area, porosity, and Pt dispersion using a two-nozzle flame spray pyrolysis (FSP) unit. The NOx storage performance at 300 °C was best for Pt located near Al2O3 as it facilitates the oxidation of NO to NO2 during the fuel lean period but the reduction rate during the subsequent short fuel rich period was much slower resulting in incomplete regeneration. This contributed to a gradual decrease of the NOx conversion at increasing cycling. In contrast, Pt on BaCO3 resulted in an initially lower NOx storage rate but during ten storage–reduction cycles a stable NOx conversion of about 50% was reached. When using NO2 instead of NO or higher NOx oxidation-reduction temperatures (e.g. 350 °C) the Pt location did not affect the NSR performance of the Pt/Ba/Al2O3 catalysts.  相似文献   
47.
Tumor ablation by thermal energy via the irradiation of plasmonic nanoparticles is a relatively new oncology treatment. Hybrid plasmonic‐superparamagnetic nanoaggregates (50–100 nm in diameter) consisting of SiO2‐coated Fe2O3 and Au (≈30 nm) nanoparticles were fabricated using scalable flame aerosol technology. By finely tuning the Au interparticle distance using the SiO2 film thickness (or content), the plasmonic coupling of Au nanoparticles can be finely controlled bringing their optical absorption to the near‐IR that is most important for human tissue transmittance. The SiO2 shell facilitates also dispersion and prevents the reshaping or coalescence of Au particles during laser irradiation, thereby allowing their use in multiple treatments. These nanoaggregates have magnetic resonance imaging (MRI) capability as shown by measuring their r2 relaxivity while their effectiveness as photothermal agents is demonstrated by killing human breast cancer cells with a short, four minute near‐IR laser irradiation (785 nm) at low flux (4.9 W cm‐2).  相似文献   
48.
A total of 236 Penicillium expansum field isolates from decayed apple fruit collected from packinghouses and processing industries located in the region of Imathia, Northern Greece were tested for their sensitivity to tebuconazole, fludioxonil, iprodione and cyprodinil. Preliminary fungitoxicity tests on the response of the isolates showed several phenotypes, distinguished according to their sensitivity to fungicides tested. The EC50 values ranged from 0.64 to 5 (average = 0.98) μg/ml for iprodione, 0.9 to 7.3 (average = 2.66) μg/ml for tebuconazole, 0.008 to 1.28 (average = 0.55) μg/ml for cyprodinil and from 0.013 to 0.47 (average = 0.08) μg/ml for fludioxonil. A bimodal distribution of the EC50 values of isolates with distinct sensitive and resistant populations to fludioxonil and tebuconazole were observed. In the case of cyprodinil, a much broader, hundred-fold, range of sensitivity was found, probably indicating that some isolates are relatively insensitive to cyprodinil compared to the most sensitive ones. Isolates exhibiting simultaneously reduced sensitivity to tebuconazole and fludioxonil or tebuconazole and iprodione or to tebuconazole and cyprodinil were also observed at low frequencies. A small portion of the population (7.5%) showed multiple resistance to tebuconazole, fludioxonil and iprodione. Study of fitness determining parameters showed that the resistance to tebuconazole, fludioxonil and iprodione had a significant adverse effect on mycelial growth rate and pathogenicity. Contrary to that, these fitness parameters were not affected in the isolates showing reduced sensitivity to cyprodinil. Analysis of patulin production on YES-agar growth medium and on artificially inoculated apple fruit showed that all isolates were mycotoxigenic. Most of the cyprodinil-insensitive isolates produced patulin at concentrations similar to or relatively higher (up to 1.5-fold on growth medium) than the sensitive ones. In contrast, a significant reduction (up to 98% of multiple resistant isolates) in patulin production was observed in all other phenotypes, indicating an adverse effect of fitness penalties on the mycotoxigenic ability of resistant isolates. The above mentioned data clearly show a considerable risk for the selection of P. expansum isolates resistant to fludioxonil, iprodione, tebuconazole and cyprodinil. The potential risk of increased patulin contamination of apples and their byproducts by the appearance and predominance of highly mycotoxigenic isolates of P. expansum resistant to the anilinopyrimidines is discussed.  相似文献   
49.
This article determines the optimal winding parameters for helically and hoop overwound toroidal hydrogen storage tanks, based on the application of variable slippage coefficients. First, an optimality condition between helical winding angle and hoop‐to‐helical thickness ratio is derived from the minimum strain energy density criterion. The winding angle distributions are then obtained with the aid of the optimality condition, taking into account the shell thickness variation along the meridional direction. The general criteria for fiber trajectory stability on a torus are presented, and the relationship for the slippage coefficient and the helical winding angle is formulated according to the windability and manufacturability. The helical winding angle and thickness at the equator are considered as design variables, whereas the minimum weight acts as the objective function. A design example with a toroidal hydrogen storage tank is outlined to demonstrate the favorable performance of the present method. The results show that the present method using variable slippage coefficients leads to a better distribution of the fiber stress in the toroidal shell and an efficient utilization of the laminate strength. The obtained winding parameters can thus be regarded as optimal for filament‐wound toroidal hydrogen storage tanks. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   
50.
This paper presents a complete face authentication system integrating both two-dimensional (color or intensity) and three-dimensional (3-D) range data, based on a low-cost 3-D sensor, capable of real-time acquisition of 3-D and color images. Novel algorithms are proposed that exploit depth information to achieve robust face detection and localization under conditions of background clutter, occlusion, face pose alteration, and harsh illumination. The well-known embedded hidden Markov model technique for face authentication is applied to depth maps and color images. To cope with pose and illumination variations, the enrichment of face databases with synthetically generated views is proposed. The performance of the proposed authentication scheme is tested thoroughly on two distinct face databases of significant size. Experimental results demonstrate significant gains resulting from the combined use of depth and color or intensity information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号